Error estimates for generalized barycentric interpolation
نویسندگان
چکیده
منابع مشابه
Error estimates for generalized barycentric interpolation
We prove the optimal convergence estimate for first order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Ha...
متن کاملError estimates for some quasi-interpolation operators
‖u− Ihu‖L2(T ) ≤cThT ‖∇ku‖L2(ω̃T ), ‖u− Ihu‖L2(E) ≤cEh E ‖∇ku‖L2(ω̃E). Here, k ∈ {1, 2}, Ih is some quasi-interpolation operator, T and E are a simplex and a face thereof, hT and hE measure the size of T and E, and ω̃T and ω̃E are neighbourhoods of T and E which should be as small as possible. Note that the interpolate Ihu never needs to be computed explicitely. Moreover, for problems in two and th...
متن کاملBarycentric Lagrange Interpolation
Barycentric interpolation is a variant of Lagrange polynomial interpolation that is fast and stable. It deserves to be known as the standard method of polynomial interpolation.
متن کاملStability of Barycentric Interpolation Formulas for Extrapolation
The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating to Jacobi in 1825. Thi...
متن کاملPyramid algorithms for barycentric rational interpolation
We present a new perspective on the Floater–Hormann interpolant. This interpolant is rational of degree (n, d), reproduces polynomials of degree d, and has no real poles. By casting the evaluation of this interpolant as a pyramid algorithm, we first demonstrate a close relation to Neville’s algorithm. We then derive an O(nd) algorithm for computing the barycentric weights of the Floater–Hormann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Computational Mathematics
سال: 2011
ISSN: 1019-7168,1572-9044
DOI: 10.1007/s10444-011-9218-z